邵题一百
ST1(5) (几何)¶
如图,BH为Rt \triangle ABC(AB<BC)的高,I,I_1,I_2分别为\triangle ABC,\triangle ABH, \triangle BCH的内心,P为II_1与BH的交点,Q为AI_2与CI_1的交点,求三条边由已知线段围成的,且三个角都有字母名称标注的三角形中相似三角形的组数
ST2(3) (几何)¶
已知未知圆心的一圆与圆外一点P,用无刻度的直尺尺规作出圆过点P的两条切线
ST3(4) (几何)¶
已知圆O与圆上一点P,用无刻度的直尺尺规作出圆O过点P的一条切线
ST4(4) (数论)¶
已知\overline{abcd},\overline{cdab}+1为完全平方数,求\overline{abcd}
ST5(3) (初中几何)¶
如图,已知正方形ABCD边长为a,E,F为平面内两点,且满足AF=CE=r,以DF,DE为邻边作平行四边形DFGE,问G的运动轨迹的区域面积