柯西不等式
0x01.柯西不等式¶
设(a_1,a_2,\cdots,a_n)与(b_1,b_2,\cdots,b_n)为两实数列,则
(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\ge(a_1b_1+a_2b_2+\cdots+a_nb_n)^2
当且仅当(a_1,a_2,\cdots,a_n)与(b_1,b_2,\cdots,b_n)对应成比例时取等
0x02.柯西不等式的证明¶
- 令
\begin{align}
f(x)&=(a_1x-b_1)^2+(a_2x-b_2)^2+\cdots+(a_nx-b_n)^2 \\
&=(a_1^2+a_2^2+\cdots+a_n^2)x^2-2(a_1b_1+a_2b_2+\cdots+a_nb_n)x+(b_1^2+b_2^2+\cdots+b_n^2)\\
&\ge 0(x \in \mathbb{R})
\end{align}
故知\triangle_f\le0,即
(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\ge(a_1b_1+a_2b_2+\cdots+a_nb_n)^2
- 由Cauchy-Schwarz展开式,
(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)=(a_1b_1+a_2b_2+\cdots+a_nb_n)^2+\Sigma_{i,j=1}^n(a_ib_j-a_jb_i)^2
知结论成立
0x03.柯西不等式的应用¶
问题描述
对(a_1,a_2,\cdots,a_n)与(b_1,b_2,\cdots,b_n)两实数列(b中每项都非负),有
\cfrac{a_1^2}{b_1}+\cfrac{a_2^2}{b_2}+\cdots+\cfrac{a_n^2}{b_n}\ge\cfrac{(a_1+a_2+\cdots+a_n)^2}{b_1+b_2+\cdots+b_n}
问题描述
对任意两实数列(a_1,a_2,\cdots,a_n)与(b_1,b_2,\cdots,b_n)(b中每项都非负),有
\cfrac{a_1}{b_1}+\cfrac{a_2}{b_2}+\cdots+\cfrac{a_n}{b_n}\ge\cfrac{(a_1+a_2+\cdots+a_n)^2}{a_1b_1+a_2b_2+\cdots+a_nb_n}
???+note " 问题描述"对任意一个实数列(a_1,a_2,\cdots,a_n),都有
(a_1+a_2+\cdots+a_n)^2\le n(a_1^2+a_2^2+\cdots+a_n^2)
问题描述
已知a,b,c>0,abc=1,k\ge 2,求证\cfrac{1}{1+ka}+\cfrac{1}{1+kb}+\cfrac{1}{1+kc}\ge \cfrac{3}{1+k}
因为abc=1,故设a=\cfrac{y}{x},b=\cfrac{z}{y},c=\cfrac{x}{z}(x,y,z\in\mathbb{R^+})
即证\Sigma\cfrac{x}{x+ky}\ge\cfrac{3}{1+k}
\begin{align}
LHS&\ge \cfrac{(\Sigma x)^2}{\Sigma x(x+ky)}\\
&=\cfrac{(\Sigma x)^2}{\Sigma x^2+k\Sigma xy}\\
&=\cfrac{(\Sigma x)^2}{(\Sigma x)^2+(k-2)\Sigma xy}(*)
\end{align}
由3(xy+yz+zx)\le(x+y+z)^2,知
\begin{align}
(*)&\ge \cfrac{(\Sigma x)^2}{(\Sigma x)^2+(k-2)\times \cfrac{1}{3}(\Sigma x)^2}\\
&=\cfrac{3}{1+k}=RHS
\end{align}
知结论成立