跳转至

柯西不等式

0x01.柯西不等式

(a_1,a_2,\cdots,a_n)(b_1,b_2,\cdots,b_n)为两实数列,则

(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\ge(a_1b_1+a_2b_2+\cdots+a_nb_n)^2

当且仅当(a_1,a_2,\cdots,a_n)(b_1,b_2,\cdots,b_n)对应成比例时取等

0x02.柯西不等式的证明

\begin{align} f(x)&=(a_1x-b_1)^2+(a_2x-b_2)^2+\cdots+(a_nx-b_n)^2 \\ &=(a_1^2+a_2^2+\cdots+a_n^2)x^2-2(a_1b_1+a_2b_2+\cdots+a_nb_n)x+(b_1^2+b_2^2+\cdots+b_n^2)\\ &\ge 0(x \in \mathbb{R}) \end{align}

故知\triangle_f\le0,即

(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\ge(a_1b_1+a_2b_2+\cdots+a_nb_n)^2
  • Cauchy-Schwarz展开式,
(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)=(a_1b_1+a_2b_2+\cdots+a_nb_n)^2+\Sigma_{i,j=1}^n(a_ib_j-a_jb_i)^2

知结论成立

0x03.柯西不等式的应用

问题描述

(a_1,a_2,\cdots,a_n)(b_1,b_2,\cdots,b_n)两实数列(b中每项都非负),有

\cfrac{a_1^2}{b_1}+\cfrac{a_2^2}{b_2}+\cdots+\cfrac{a_n^2}{b_n}\ge\cfrac{(a_1+a_2+\cdots+a_n)^2}{b_1+b_2+\cdots+b_n}
问题描述

对任意两实数列(a_1,a_2,\cdots,a_n)(b_1,b_2,\cdots,b_n)b中每项都非负),有

\cfrac{a_1}{b_1}+\cfrac{a_2}{b_2}+\cdots+\cfrac{a_n}{b_n}\ge\cfrac{(a_1+a_2+\cdots+a_n)^2}{a_1b_1+a_2b_2+\cdots+a_nb_n}

???+note " 问题描述"对任意一个实数列(a_1,a_2,\cdots,a_n),都有

(a_1+a_2+\cdots+a_n)^2\le n(a_1^2+a_2^2+\cdots+a_n^2)
问题描述

已知a,b,c>0,abc=1,k\ge 2,求证\cfrac{1}{1+ka}+\cfrac{1}{1+kb}+\cfrac{1}{1+kc}\ge \cfrac{3}{1+k}

因为abc=1,故设a=\cfrac{y}{x},b=\cfrac{z}{y},c=\cfrac{x}{z}(x,y,z\in\mathbb{R^+})

即证\Sigma\cfrac{x}{x+ky}\ge\cfrac{3}{1+k}

\begin{align} LHS&\ge \cfrac{(\Sigma x)^2}{\Sigma x(x+ky)}\\ &=\cfrac{(\Sigma x)^2}{\Sigma x^2+k\Sigma xy}\\ &=\cfrac{(\Sigma x)^2}{(\Sigma x)^2+(k-2)\Sigma xy}(*) \end{align}

3(xy+yz+zx)\le(x+y+z)^2,知

\begin{align} (*)&\ge \cfrac{(\Sigma x)^2}{(\Sigma x)^2+(k-2)\times \cfrac{1}{3}(\Sigma x)^2}\\ &=\cfrac{3}{1+k}=RHS \end{align}

知结论成立